Contents

Foreword	5
User Guide	7

Chapter 1: Revision of the Basic Operations

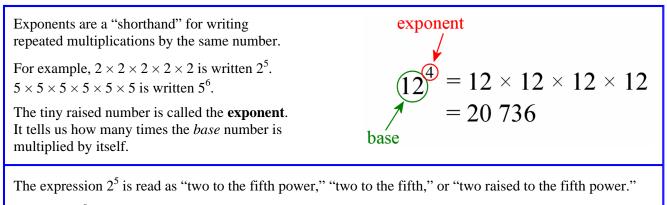
Introduction	11
Warm Up: Mental Maths	13
Revision of the Four Operations 1	15
Revision of the Four Operations 2	21
Powers and Exponents	24
Place Value	27
Rounding and Estimating	31
Lessons in Problem Solving	34
Chapter 1 Mixed Revision	38
Chapter 1 Revision	40

Chapter 2: Expressions and Equations

Introduction
The Order of Operations 45
Expressions, Part 1 47
Terminology for the Four Operations 49
Words and Expressions 51
Expressions, Part 2 53
Writing and Simplifying Expressions 1:
Length and Perimeter 55
More on Writing and Simplifying Expressions 58
Writing and Simplifying Expressions 2: Area 61
Multiplying and Dividing in Parts 66
The Distributive Property
Equations
Solving Equations
Writing Equations
Inequalities
Using Two Variables
Chapter 2 Mixed Revision 90
Chapter 2 Revision

Chapter 3: Decimals

Introduction	97
Place Value with Decimals	99
Comparing Decimals	101
Add and Subtract Decimals	103
Rounding Decimals	105
Revision: Multiply and Divide Decimals Mentally	108
Revision: Multiply Decimals by Decimals	110
Revision: Long Division with Decimals	113
Problem Solving with Decimals	115
Fractions and Decimals	117
Multiply and Divide by Powers of Ten	120
Revision: Divide Decimals by Decimals	122
Divide Decimals by Decimals 2	125
Convert Metric Measuring Units	127
Chapter 3 Mixed Revision	130
Chapter 3 Revision	132


Chapter 4: Ratios

Introduction	137
Ratios and Rates	139
Unit Rates	143
Using Equivalent Rates	145
Ratio Problems and Bar Models 1	149
Ratio Problems and Bar Models 2	152
Aspect Ratio	155
Chapter 4 Mixed Revision	157
Chapter 4 Revision	159

Chapter 5: Percent

Introduction	161
Percent	163
What Percentage?	167
Percentage of a Number (Mental Maths)	169
Percentage of a Number: Using Decimals	172
Discounts	175
Practice with Percent	177
Finding the Total When the Percentage Is Known	180
Chapter 5 Mixed Revision	182
Revision: Percent	184

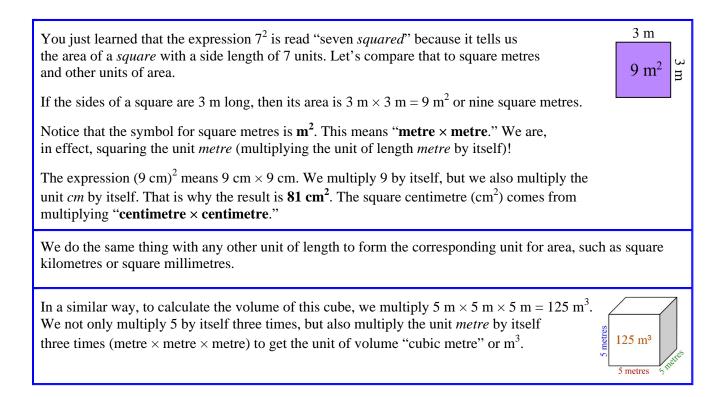
Powers and Exponents

Similarly, 7^9 is read as "seven to the ninth power," "seven to the ninth," or "seven raised to the ninth power."

The "powers of 6" are simply expressions where 6 is raised to some power: For example, 6^3 , 6^4 , 6^{45} and 6^{99} are powers of 6. What would powers of 10 be?

Expressions with the exponent 2 are usually read as something "squared." For example, 11^2 is read as "eleven squared." That is because it gives us *the area of a square* with the side length of 11 units.

Similarly, if the exponent is 3, the expression is usually read using the word "**cubed**." For example, 31^3 is read as "**thirty-one cubed**" because it gives the *volume of a cube* with the edge length of 31 units.


1. Write the expressions as multiplications, and then solve them in your head.

a. $3^2 = 3 \times 3 = 9$	b. 1 ⁶
c. 4 ³	d. 10^4
e. 5^3	f. 10 ²
g. 2^3	h. 8 ²
i. 0 ⁵	j. 10 ⁵
k. 50^2	l. 100 ³

https://www.mathmammoth.com

2. Rewrite the expressions using an exponent, then solve them. You may use a calculator.

Sample worksheet from	
e. nine to the eighth power	f. eleven cubed
c. 40 squared	d. $10 \times 10 \times 10 \times 10$
a. $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$	b. $8 \times 8 \times 8 \times 8 \times 8$

3. Express the area (A) as a multiplication, and solve.

a. A square with a side of 12 kilometres:	b. A square with sides 6 m long:
$A = \underline{12 \text{ km} \times 12 \text{ km}} = \underline{\qquad}$	A =
c. A square with a side length of 6 centimetres:	d. A square with a side with a length of 12 cm:
A =	A =

4. Express the volume (V) as a multiplication, and solve.

a. A cube with an edge of 2 cm:	b. A cube with edges 10 cm long each:
$V = \underline{2 \text{ cm} \times 2 \text{ cm} \times 2 \text{ cm}} =$	V =
c. A cube with edges 1 m in length:	d. A cube with edges that are all 5 m long:
V =	V =

5. **a.** The perimeter of a square is 40 centimetres. What is its area?

b. The volume of a cube is 64 cubic centimetres. How long is its edge?

c. The area of a square is 121 m². What is its perimeter?

d. The volume of a cube is 27 cm³. What is the length of one edge?

Sample worksheet from https://www.mathmammoth.com

The powers of 10 are very special	$10^1 = 10$	$10^4 = 10000$
—and very easy! Notice that the exponent tells us <i>how</i>	$10^2 = 10 \times 10 = 100$	$10^5 = 100000$
many zeros there are in the answer.	$10^3 = 10 \times 10 \times 10 = 1\ 000$	$10^6 = 1\ 000\ 000$

6. Fill in the patterns. In part (d), choose your own number to be the base. Use a calculator in parts (c) and (d).

a.	b.	с.	d.
2 ¹ =	3 ¹ =	5 ¹ =	
$2^2 =$	$3^2 =$	$5^2 =$	
$2^{1} =$ $2^{2} =$ $2^{3} =$ $2^{4} =$ $2^{5} =$ $2^{6} =$	$3^3 =$	$5^3 =$	
2 ⁴ =	3 ⁴ =	5 ⁴ =	
2 ⁵ =	3 ⁵ =	5 ⁵ =	
2 ⁶ =	3 ⁶ =	5 ⁶ =	

7. Look at the patterns above. Think carefully how each step comes from the previous one. Then answer.

a. If $3^7 = 2$ 187, how can you use that result to find 3^8 ?

b. Now find 3^8 without a calculator.

c. If $2^{45} = 35\,184\,372\,088\,832$, use that to find 2^{46} without a calculator.

8. Fill in.

a. 17² gives us the ______ of a ______ with sides ______ units long.

b. 101³ gives us the ______ of a ______ with edges ______ units long.

c. 2×6^2 gives us the _____ of two _____ with sides _____ units long.

d. 4×10^3 gives us the _____ of ____ with edges _____ units long.

Make a pattern, called a **sequence**, with the powers of 2, starting with 2^6 and going *backwards* to 2^0 . At each step, *divide* by 2. What is the logical (though surprising) value for 2^0 from this method?

Make another, similar, sequence for the powers of 10. Start with 10^6 and divide by 10 until you reach 10^0 . What value do you calculate for 10^0 ?

Try this same pattern for at least one other base number, *n*. What value do you calculate for n^{0} ? Do you think it will come out this way for every base number?

Why or why not?

Sample worksheet from https://www.mathmammoth.com

The Distributive Property

The **distributive property** states that a(b + c) = ab + ac

It may look like a meaningless or difficult equation to you now, but don't worry, it will become clearer!

The equation a(b + c) = ab + ac means that you can *distribute* the multiplication (by *a*) over the sum b + c so that you multiply the numbers *b* and *c* separately by *a*, and add last.

You have already used the distributive property! When you separated $3 \cdot 84$ into $3 \cdot (80 + 4)$, you then multiplied 80 and 4 *separately* by 3, and added last: $3 \cdot 80 + 3 \cdot 4 = 240 + 12 = 252$. We called this using "partial products" or "multiplying in parts."

Example 1. Using the distributive property, we can write the product 2(x + 1) as $2x + 2 \cdot 1$, which simplifies to 2x + 2.

Notice what happens: Each term in the sum (x + 1) gets multiplied by the factor 2! Graphically:

$$2(x+1) = \underline{2x} + \underline{2 \cdot 1}$$

Example 2. To multiply $s \cdot (3 + t)$ using the distributive property, we need to multiply *both* 3 and *t* by *s*:

 $s \cdot (3+t) = s \cdot 3 + s \cdot t$, which simplifies to 3s + st.

1. Multiply using the distributive property.

a. $3(90+5) = 3 \cdot __ + 3 \cdot __ =$	b. $7(50+6) = 7 \cdot __ + 7 \cdot __ =$
c. $4(a+b) = 4 \cdot __ + 4 \cdot __ =$	d. $2(x+6) = 2 \cdot __ + 2 \cdot __ =$
e. $7(y+3) =$	f. $10(s+4) =$
g. $s(6+x) =$	h. $x(y+3) =$
i. $8(5+b) =$	j. $9(5+c) =$

Example 3. We can use the distributive property also when the sum has three or more terms. Simply multiply *each term* in the sum by the factor in front of the brackets:

$$5(x + y + 6) = 5 \cdot x + 5 \cdot y + 5 \cdot 6$$
, which simplifies to $5x + 5y + 30$

2. Multiply using the distributive property.

a. $3(a+b+5) =$	b. $8(5 + y + r) =$
c. $4(s+5+8) =$	d. $3(10 + c + d + 2) =$

Sample worksheet from https://www.mathmammoth.com

©2022 Taina Miller

Example 4. Now one of the terms in the sum has a coefficient (the 2 in 2*x*):

 $6(2x+3) = 6 \cdot 2x + 6 \cdot 3 = 12x+18$

3. Multiply using the distributive property.

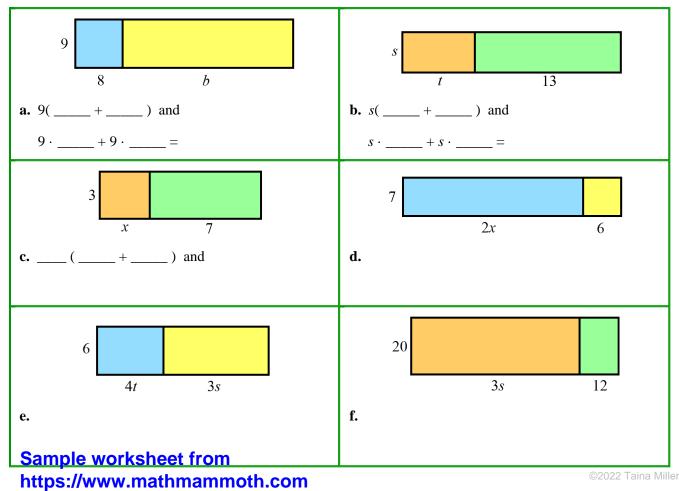
a. $2(3x+5) =$	b. $7(7a+6) =$
c. $5(4a+8b) =$	d. $2(4x + 3y) =$
e. $3(9+10z) =$	f. $6(3x+4+2y) =$
g. $11(2c+7a) =$	h. $8(5+2a+3b) =$

To understand even better why the the distributive property works, let's look at an area model (this, too, you have seen before!).

The area of the whole rectangle is 5 times (b + 12). But if we think of it as *two* rectangles, the area of

the first rectangle is 5b, and of the second, $5 \cdot 12$.

Of course, these two expressions have to be equal:


 $5 \cdot (b+12) = 5b + 5 \cdot 12 = 5b + 60$

5

b

12

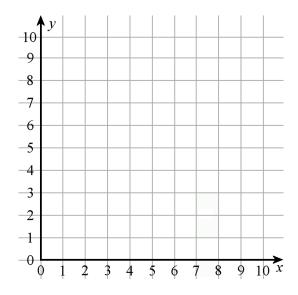
4. Write an expression for the area in two ways, thinking of one rectangle or two.

Using Two Variables

There true. F	ple 1. are ma for exa of the	any va mple,	lues o when	f x and x is 4,	l y tha then y	t make v is (1/	e that e 2) · 4	equation		-	6 5	<i>y</i>									
x	1	2	3	4	5						4							•	+		
у	1⁄2	1	1 1⁄2	2	2 1⁄2						3					•					
74	6	7	8	9	10						2			•							
x y	0 3	/ 3 ½	8 4	9 4 ½	5						οL	•	2	3	_				8	9 1	X
In this those : Exam	ink of lesson functio ple 2. situat	a func 1, you ons loc One to	tion as will st ok like owel c	s a rela tudy of a <i>line</i> osts \$4	ationsh nly lin . There 4. If ye	nip bet l ear fu e exist ou buy	ween inction many 17 to	two va ns. The other, wels, t	riable e word , differ the cos	y the e s. 1 "line cent ki	ar" o nds 7 . \$4	com of f 4 =	es f unc \$68	ron	n the	e fac	t th			-	
In this those : Exam In this	function	a func n, you ons loc One to ion, w	tion as will st ok like owel c e are i towel	s a rela udy of a <i>line</i> osts \$4 nteres s a per	ationsh nly lin . Thero 4. If yo ted in rson b	nip bet ear fu e exist ou buy two va uys is	ween inction many 17 to ariable a varia	two va ns. The other, wels, t <u>s</u> who able. (1	riable e word , differ he cos se valu	y the e s. 1 "line rent ki st is 17 ues ca vary!)	ar" o nds 7 . \$4 n cha Let ²	com of f 4 = ang s d	es f unc \$68 e: enot	ron tion	the n	e fac we	t th ll.	at th	ne gi	raphs	5 0
In this those : Exam In this 1. The 2. The There	lesson function ple 2. situat e num e total is a ve	a func n, you ons loc One to ion, w ber of cost v ery sin	tion as will st bk like owel c e are i towel aries a	s a rela a line osts \$4 nteres s a per accord lations	ationsh nly lin . There 4. If you ted in tron bu ing to ship be	nip bet near fu e exist ou buy two va uys is how n etween	ween many 17 to ariable a varia nany to n N and	two vant wo vant work wels, t wels, t who who who who who who who who who who	ariable e word , differ the cos se value (t can are bo C = N	y the e s. 1 "line rent ki st is 17 ues ca vary!) ught.	ar" o nds 7 . \$4 n cha Let ²	com of f 4 = ang s d	es f unc \$68 e: enot	ron tion	the n	e fac we	t th ll.	at th	ne gi	raphs	5 0
In this those : Exam In this 1. The 2. The There (This :	lesson function ple 2. situat e num e total is a ve means	a func a, you ons loc One to ion, w ber of cost v ery sin the to	tion as will st bk like owel c e are i towel aries a nple re tal cos	s a rela a line osts \$4 nteres s a per accord lations t <i>is</i> the	ationsh nly lin . There 4. If yo ted in rson bu ing to ship be e num	hip bet hear fu e exist bu buy two va uys is how n etween ber of	ween many 17 to ariable a varia nany to n N and towels	two vant wo vant work wels, the other, wels, the second state $\frac{s}{s}$ who wels d C:	riable e word , differ he cos se valu (t can are bo C = N s \$4.)	y the e s. I "line rent ki st is 17 ues ca vary!) ught. • \$4	ar" (nds 7 · \$4 n ch Let Let (com of f 4 = ang 's d C be	es f unc \$68 e: enot e the	ron ior e th	n the s as ne n' st.	e fac we	et th ll. eer c	at th	wels	raphs	5 0
In this those : Exam In this 1. The 2. The There (This is	lesson function ple 2. situat e num e total is a ve	a func a func a func ons loc One to ion, w ber of cost v ery sin the to ally w	tion as will st bk like owel c e are i towel aries a nple re tal cos ritten	s a relations a <i>line</i> osts \$ ² nteres s a per accord lations t <i>is</i> the as C :	ationsh nly lin . There 4. If you ted in tron bu ing to ship bu e num = 4N	hip bet hear fu e exist bu buy two va two va uys is how n etween ber of becaus	ween many 17 to ariable a varia nany to N and towels se in a	two va ns. The other, wels, t s who able. (1 owels d C:	riable e word , differ he cos se valu (t can are bo C = N s \$4.) we w	y the e s. I "line rent ki st is 17 ues ca vary!) ught. • \$4 rite the	ar" (nds 7 · \$4 n cha Let Let (com of f 4 = ang 's d C be	es f unc \$68 e: e the e the	ron ior e th co	n the s as ne n' st.	e fac we umb	et th ll. eer c	at th	wels	raphs	5 0
In this those : Exam In this 1. The 2. The There (This : fhis is (not vi	lesson function ple 2. situat e num e total is a ve means s norm	a func a func b you ons loc One to ion, w ber of cost v ery sin the to ally w sa), ar	tion as will st bk like owel c e are i towel aries a nple re tal cos ritten nd we	s a relations a <i>line</i> osts \$ ⁴ nteres s a perfectord lations t <i>is</i> the as C : omit the	ationsh nly lin . There 4. If you ted in tron buing to ship buing e num ship buing to a num a 4N	hip bet hear fu e exist bu buy two va uys is how n etween ber of becaus ltiplica	ween many 17 to ariable a varia nany to N and towels se in a ation s	two vans. The other, wels, the wels, the wels, the second state $\frac{s}{s}$ who able. (I) the second state $\frac{s}{s}$ times are second state $\frac{s}{s}$ times and $\frac{s}{s}$ times are second state $\frac{s}{s}$ times and $\frac{s}{s}$ times are second state $\frac{s}{s}$ times and $\frac{s}{s}$ times are second state $\frac{s}{s}$ times times state s	riable e word , differ the cos se value (t can are bo C = N s \$4.) we w tween	y the e s. I "line rent ki st is 17 ues ca vary!) ught. • \$4 rite the	ar" (nds 7 · \$4 n cha Let Let (com of f 4 = ang 's d C be	es f unc \$68 e: e the e the	ron ior e th co	n the s as ne n' st.	e fac we umb	et th ll. eer c	at th	wels	raphs	5 0
In this those : Exam In this 1. The 2. The There (This : (not vi	lesson function ple 2. situat e num e total is a ve means s norm ice ver	a func a func b you ons loc One to ion, w ber of cost v ery sin the to ally w sa), ar	tion as will st bk like owel c e are i towel aries a nple re tal cos ritten nd we	s a relations a <i>line</i> osts \$ ⁴ nteres s a perfectord lations t <i>is</i> the as C : omit the	ationsh nly lin . There 4. If you ted in tron buing to ship buing e num ship buing to a num a 4N	hip bet hear fu e exist bu buy two va uys is how n etween ber of becaus ltiplica	ween many 17 to ariable a varia nany to N and towels se in a ation s	two vans. The other, wels, the wels, the wels, the second state $\frac{s}{s}$ who able. (I) the second state $\frac{s}{s}$ times are second state $\frac{s}{s}$ times and $\frac{s}{s}$ times are second state $\frac{s}{s}$ times and $\frac{s}{s}$ times are second state $\frac{s}{s}$ times and $\frac{s}{s}$ times are second state $\frac{s}{s}$ times times state s	riable e word , differ the cos se value (t can are bo C = N s \$4.) we w tween	y the e s. I "line rent ki st is 17 ues ca vary!) ught. • \$4 rite the	ar" (nds 7 · \$4 n cha Let Let (com of f 4 = ang C bo and	es f unc \$68 e: e the e the	ron ior e th co	n the s as he n' st. nt c ble	e fac we umb	et th ll. eer c	at th	wels	raphs	5 0
In this hose : Exam In this I. The 2. The There This is not vi The ta	lesson function ple 2. situat e numble total is a ve means s norm ice ver ble be	a func a func b you ons loc One to ion, w ber of cost v ery sin the to ally w sa), ar	tion as will st will st bk like owel c e are i towel aries a tal cos ritten nd we ows s	s a relations a line of $a line$ of $a line$ of $a line$ of $a line of a of $	ationsh nly lin . There 4. If youted in ted in tron buing to ship buing to ship buing e numb = 4N he multon	hip bet hear fu e exist bu buy two va uys is how n etween ber of becaus hiplica e value	ween many 17 to ariable a varia nany to towels se in a ation s es of C	two vans. The other, wels, the wels, the second se	riable e word , differ he cos se valu (t can are bo C = N (s \$4.) we w tween V.	y the e s. I "line rent ki st is 17 ues ca vary!) ught. • \$4 rite the a num	ar" (nds 7 · \$4 n ch: Let (Let (com of f 4 = ang 's d C b and	es f unc \$68 e: e the e the	ron ior e th co frc aria	n the s as as a s as a s a s a s a s a s a s	e fac we umb	et th ll. eer c	at th	wels	raphs	5 0
In this those z in this those z in this I. The 2. The 2. The There This is (not view) for the tar (x) (y) From the tar (y) for the tar (y	lesson function ple 2. situat e num e total is a ve means s norm ice ver ble be N C	a func a func b you ons loc One to ion, w ber of cost v ery sim the to ally w sa), ar low sh 1 4 ole, we	tion as will st will st bk like owel c e are i towel aries a nple re tal cos ritten nd we sows s 2 8 e get lo	s a relations a line of the second s	ationship lin . There 4. If young ted in the second se	hip bet hear fu e exist bu buy two va uys is how n etween ber of becaus triplica e value 5 20	ween many many 17 to ariable a varia anany to a varia anany to se in a ation s es of C 6 24 s. Som	two vans. The other, wels, the other, wels, the second se	riable e word, differ he cos se value (t can are bo C = N s \$4.) we w tween N. 10 40	y the e s. I "line rent ki st is 17 ues ca vary!) ught. • \$4 rite the a num 15 60	ar" of nds 7 - \$4 n cha Let Let ber	com of f 4 = ang 's d C b and	es f unc \$68 e: e the e the	ron ion e th co frc aria $\frac{30}{22}$ $\frac{12}{12}$	n the s as le n'st.	e fac we umb	et th ll. eer c	at th	wels	raphs	5 0
In this hose z hose z hose z in this in this 1. The 2. The There This is in the target of targe	lesson function ple 2. situat e num e total is a ver means s norm ice ver ble be N C	a func a func b you ons loc One to ion, w ber of cost v ery sim the to ally w sa), ar low sh 1 4 ole, we e coor	tion as will st will st bk like owel c e are i towel aries a nple re tal cos ritten nd we sows s 2 8 e get lo dinate	s a relations a line of $a line$ of a line line of a line of a line of a line of a	ationsh nly lin . There 4. If you ted in rson buing to ship be e number = 4N he mult <i>ossible</i> 4 16 number you see	hip bet hear fu e exist bu buy two va uys is how n etween ber of becaus triplica e value 5 20 er pairs e on th	ween many 17 to ariable a varia nany to a varia nany to se in a ation s es of C 6 24 s. Som e righ	two vans. The other, wels, the other, wels, the second se	riable e word , differ he cos se valu (t can are bo C = N s \$4.) we w tween N. 10 40 nem ar	y the e s. I "line rent ki st is 17 ues ca vary!) ught. • \$4 rite the a nun 15 60 e	ar" of nds 7 · \$4 n cha Let Let ber 20 80	com of f $4 =$ ang $c bo$ mbo anc 0	es f unc \$68 e: enot e the a v	from from $3(\frac{2}{2})$	n the s as as a state of the s as a state of the state of	e fac we umb	et th ll. eer c	at th	wels	raphs	5 0

In this situation, we think of the variable N as the *independent variable*, and the variable C as the *dependent variable*, because its value *depends* on the value of N <u>according to the given equation</u> (C = 4N). In other words, we let the value of N vary (sort of independently), and the values of C are what we calculate or "observe," noticing how they depend on the value of N.

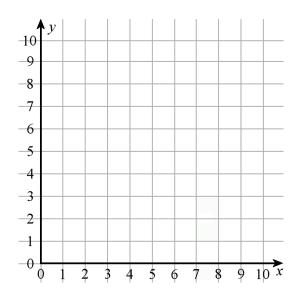
The independent variable is *always* plotted on the <u>horizontal axis</u>.


We *could* look at this situation just the opposite way also: let the cost be the independent variable, and study how the number of towels depends on that. Then, we would plot C on the horizontal axis, and calculate N using an equation that depends on C (it would be N = C/4).

https://www.mathmammoth.com

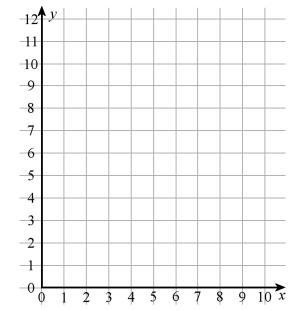
1. Calculate the values of *y* according to the equation y = x + 2.

x	0	1	2	3	4	5	6	7	8
У	2	3	4						


Now, plot the points.

2. Calculate the values of *y* according to the equation y = 8 - x.

	1								
x	0	1	2	3	4	5	6	7	8
у	8								


Now, plot the points.

3. Calculate the values of *y* according to the equation y = 2x - 1.

x	1	2	3	4	5	6
У						

Now, plot the points.

Sample worksheet from https://www.mathmammoth.com

©2022 Taina Miller

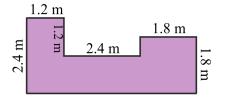
Problem Solving with Decimals

Example 1. Martha jogs 0.8 kilometre every day. How many days will it take for her to jog a distance of 20 kilometres?	Example 2. If you divide a paper that is into three equally-wide columns. How w columns?	
We could divide 20 km by 0.8 km to find out how many times 0.8 "fits" into 20. However, there is also another way: we can solve it with <i>mental maths</i> . Notice, 0.8 goes evenly into 4, and 4 goes evenly into 20. 0.8 fits five times into 4 (because $5 \cdot 0.8 = 4$).	We divide 21.25 cm by three. Since the width of 21.25 cm is given to <i>two</i> decimal places, it is reasonable to also give the answer to <i>two</i> decimal places, so divide until there are <i>three</i> decimals in the quotient, and then round to the nearest hundredth.	$ \begin{array}{r} 0 7.0 8 3 \\ 3)2 1.2 5 0 \\ \underline{-2 4} \\ 1 0 \\ \underline{-9} \\ 1 \end{array} $
And, 4 fits five times into 20. So, 0.8 fits into 20 exactly $5 \cdot 5 = 25$ times. Martha will have jogged 20 kilometres in 25 days.	$21.25 \div 3 \approx 7.08$, so the columns are about 1 f you have to actually measure these collstandard ruler, then it would be reasonable answer as 7.1 cm.	lumns using a

In all of the problems, give your answer to a meaningful accuracy, especially when the division is not even.

1. Jack, John and Jerry shared a prize of \$200 equally. How much did each one get?

2. A student textbook weighs 0.4 kg. How many of those can you pack into a suitcase so that the total weight is 18 kg?


3. These are the quiz results of the Spanish class: 21 15 18 29 19 34 39 21 11 8 15 28 15 11 12. Find the average.

To calculate the average of a set of numbers:

1. Add all of the numbers.

2. Divide the sum by the number of the data entries.

4. Find the area and perimeter of this shape.

5. Kitchen Delight makes blenders. Each blender weighs 1.2 kg. The shipping company allows no more than 40 kg of weight in each shipping crate. How many blenders can be packed into each shipping crate?

6. Find the unit prices for the following items. Round to the nearest cent. Use the space below for calculations.

Item and price	Unit price	What would this c	ost?
5 L of orange juice for \$15.65		2.3 L of orange juice	
3 kg of chicken for \$13.25		5.7 kg of chicken	
4 kg of bananas for \$7.90		2.5 kg of bananas	

Convert Metric Measuring Units

The metric system has one basic unit for each thing we might measure: For length, the unit is the **metre**. For weight, it is the gram. And for volume, it is the litre.

All of the other units for measuring length, weight, or volume are *derived* from the basic units using *prefixes*. The prefixes tell us what multiple of the basic unit the derived unit is.

For example, centilitre is 1/100 part of a litre (*centi* means 1/100).

Unit	Abbr	Meaning
kilometre	km	1 000 metres
hectometre	hm	100 metres
decametre	dam	10 metres
metre	m	(the basic unit)
decimetre	dm	1/10 metre
centimetre	cm	1/100 metre
millimetre	mm	1/1000 metre

Unit	Abbr	Meaning
kilogram	kg	1 000 grams
hectogram	hg	100 grams
dekagram	dag	10 grams
gram	g	(the basic unit)
decigram	dg	1/10 gram
centigram	cg	1/100 gram
milligram	mg	1/1000 gram

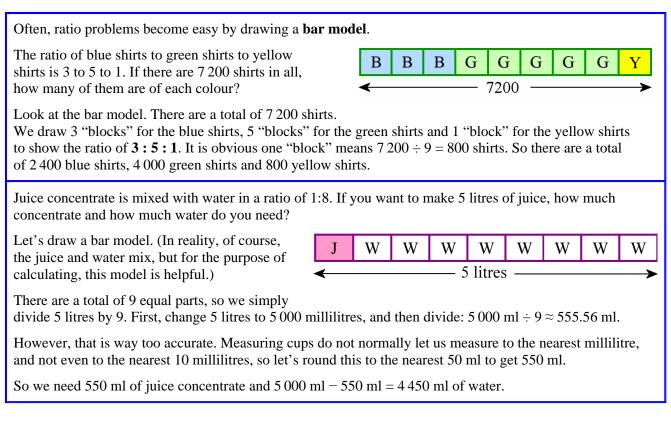
Prefix	Abbreviated	Meaning
kilo-	k	1 000
hecto-	h	100
deka-	da	10
-	-	(the basic unit)
deci-	d	1/10
centi-	с	1/100
milli-	m	1/1000

Unit	Abbr	Meaning
kilolitre	kl	1 000 litres
hectolitre	hl	100 litres
dekalitre	dal	10 litres
litre	L	(the basic unit)
decilitre	dl	1/10 litre
centilitre	cl	1/100 litre
millilitre	ml	1/1000 litre

1. Write these amounts using the basic units (metres, grams, or litres) by "translating" the prefixes. Use both fractions and decimals, like this: 3 cm = 3/100 m = 0.03 m (since "centi" means "hundredth part").

a. $3 \text{ cm} = 3/100 \text{ m} = 0.03 \text{ m}$	b. $2 cg = \ g = \ g$
5 mm = m = m	$6 \text{ ml} = __\L = _\L$
$7 dl = _\ L = _\ L$	$1 dg = \underline{\qquad} g = \underline{\qquad} g$

2. Write the amounts in basic units (metres, grams, or litres) by "translating" the prefixes.


a. $3 \text{ kl} = ___L$	b. 2 dam = m	c. 70 km = m
$8 \text{ dag} = \underline{\qquad} g$	$9 \text{ hl} = ___L$	$5 \text{ hg} = \underline{\qquad} g$
6 hm = m	$7 \text{ kg} = \underline{\qquad} g$	$8 dal = _\ L$

3. Write the amounts with derived units (units with prefixes) and a single-digit number.

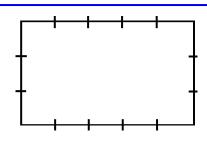
a. $3\ 000\ \text{g} = \underline{3}\ \text{kg}$	b. 0.01 m =	c. 0.04 L =
800 L = <u>8</u>	0.2 L =	0.8 m =
60 m = <u>6</u> Sample worksheet from	0.005 g =	0.007 L =
https://www.mathmammoth.com		

127

Ratio Problems and Bar Models 1

- 1. A factory makes shirts in a ratio of 1:3:3:1 for the sizes S, M, L and XL, respectively.
 - a. Draw a bar model. What is the ratio of small (S) shirts to the total number of shirts?
 - **b.** In a batch of 1 000 shirts, how many of them are of each size?
- 2. The instructions on a box of juice concentrate say to mix 2 parts of concentrate to 5 parts of water.
 - **a.** If you want to make 3 litres of juice, how much concentrate and how much water do you need?
 - **b.** Let's say that you have 1/2 litre of concentrate left. According to the instructions, how much water would you need to add to that?

How much diluted juice does this make?


Aspect Ratio

You might have heard about the <u>aspect ratio</u> of the screens of televisions, computer monitors and other monitors. The aspect ratio is simply **the ratio** of a **rectangle's width to its height or length.**

If the rectangle is "standing up," it is often easier to think and talk about width and height. If it is laid on the ground, then we usually talk about its width and length.

Example. A rectangle's width and height are in a ratio of 5:3. This means the aspect ratio is 5:3. If the rectangle's perimeter is 64 cm, what are its width and its height?

Let's draw the rectangle. Working from the 5:3 aspect ratio, let's divide the sides into "parts," or the same-sized segments, 5 for the width, and 3 for the height. We can see in the picture that perimeter is made up of 16 of these "parts." Since $64 \div 16 = 4$, each part is 4 cm long.

Therefore, the rectangle's width is $5 \cdot 4 \text{ cm} = 20 \text{ cm}$, and its height is $3 \cdot 4 \text{ cm} = 12 \text{ cm}$.

- 1. The width and height of a rectangle are in a ratio of 9:2.
 - **a.** Draw the rectangle, and divide its width and length into parts according to its aspect ratio.
 - **b.** If the rectangle's perimeter is 220 cm, find its width and its height.
- 2. A rectangle's width is three times its length, and its perimeter is 120 mm. Find the rectangle's width and its length.
- 3. Find the aspect ratio of each rectangle:
 - **a.** a rectangle whose height is 2/5 of its width
 - **b.** a rectangle whose height is five times its width
 - **c.** a square
- 4. The door of a refrigerator is 4/9 as wide as it is tall.
 - **a.** What is the ratio of the door's width to its height?
 - **b.** If the door is 54 cm wide, how tall is it?

Sample worksheet from https://www.mathmammoth.com

Percentage of a Number (Mental Maths)

100% of something means <i>all</i> of it. 1% of something means 1/100 of it.				
Since one percent means "a hundredth part," calculating a percentage of a quantity is the same thing as finding a fractional part of it. So percentages are really fractions !				
How much is 1% of 200 kg? This means how much is 1/100 of 200 kg? It is simply 2 kg.				
To find 1% of something (1/100 of something), divide by 100.				
Do you remember how to divide by 100 in your head? Just move the decimal point two places to the left. For example, 1% of 540 is 5.4, and 1% of 8.30 is 0.083.				
To find 2% of some quantity, first find 1% of it, and double that.				
For example, let's find 2% of \$6. Since 1% of \$6 is \$0.06, then 2% of \$6 is \$0.12.				
To find 10% of some quantity, divide by 10.				
Why does that work? It is because 10% is 10/100, which equals 1/10. So 10% is 1/10 of the quantity!				
For example, 10% of \$780 is \$78. And 10% of \$6.50 is \$0.65. (To divide by 10 in your head, just move the decimal point one place to the left.)				
Can you think of a way to find 20% of a number?				
1. Find 10% of these numbers.				
a. 700 b. 321 c. 60 d. 7				
2. Find 1% of these numbers.				
a. 700 b. 321 c. 60 d. 7				

3. One percent of Mother's pay cheque is \$22. How much is her total pay cheque?

4. Fill in the table. Use mental maths.	
---	--

percentage \downarrow number \rightarrow	1 200	80	29	9	5.7
1% of the number					
2% of the number					
10% of the number					
20% of the number Sample worksheet	from				
https://www.mathmammoth.com			©2022 Taina Mill		

5. Fill in this guide for using mental maths with percentages:

Mental Maths and Percentage of a Number		
50% is $\frac{1}{2}$. To find 50% of a number, divide by	50% of 244 is	
10% is $\frac{1}{2}$. To find 10% of a number, divide by	10% of 47 is	
1% is $\frac{1}{2}$. To find 1% of a number, divide by	1% of 530 is	
To find 20%, 30%, 40%, 60%, 70%, 80%, or 90% of a number,	10% of 120 is	
 First find% of the number, and 	30% of 120 is	
• then multiply by 2, 3, 4, 6, 7, 8, or 9.	60% of 120 is	

6. Find the percentages. Use mental maths.

a. 10% of 60 kg	b. 10% of \$14	c. 10% of 5 m
20% of 60 kg	30% of \$14	40% of 5 m
d. 1% of \$60	e. 10% of 110 cm	f. 1% of \$1 330
4% of \$60	70% of 110 cm	3% of \$1 330

7. David pays a 20% income tax on his \$2 100 salary.

a. How many dollars is the tax?

- **b.** How much money does he have left after paying the tax?
- c. What percentage of his salary does he have left?
- 8. Nancy pays 30% of her \$3 100 salary in taxes. How much money does she have left after paying the tax?
- 9. Identify the errors that these children made. Then find the correct answers.

a. Find 90% of \$55.	b. Find 6% of \$1 400.
Peter's solution: 10% of \$55 is \$5.50 So, I subtract 100% - \$5.50 = \$94.50	Patricia's solution: 1% of \$1 400 is \$1.40. So, 6% is six times that, or \$8.40.
Sample worksheet from	

https://www.mathmammoth.com

Finding the Total When the Percentage Is Known

Use a bar model to find the unknown total when you know the percentage and the quantity.

Example 1. If 32 red marbles make up 4/5 of the total number of marbles, how many marbles are there in all?

Look at the bar model. We have drawn the marbles as divided into 5 equal "blocks." Four of those five blocks make up a total of 32 marbles. So, one block, or 1/5 of the marbles, is <u>8 marbles</u>. From that it is easy to calculate the total: $5 \cdot 8 = 40$ marbles.

 $\longleftarrow 32 \longrightarrow 32$

The same reasoning works if the part of the marbles is given as a *percentage* instead of as a fraction:

Example 2. If 91 red marbles is 35% of the total number of marbles, how many marbles are there in all?

In the model, we need 100 little "blocks" with 35 of them coloured (since 35/100 of the marbles are red.)

The calculation is done the same way: If 35 "blocks" or 35% make up 91 marbles, then one "block", or one percent, is $91 \div 35 = 2.6$. Then, to find the total, simply multiply that number by 100: $2.6 \cdot 100 = 260$.

1. Margie gave away 40 marbles, which was 20% of the marbles that she had. How many marbles did Margie have at first? *Hint: Instead of 100 blocks, you can use 5 blocks, each representing 20% or 1/5.*

2. Emma cut down the amount of sugar in a recipe by 75%. Now, she uses only 1/2 cup of sugar. How much sugar did the recipe call for originally? *Hint: Instead of 100 blocks, you can use 4 blocks, each representing 25%.*

3. When Eric bought a guitar for \$90, he used up 12% of the money he had. How much money did he have at first?

Sample worksheet from https://www.mathmammoth.com

Example 3. A phone was discounted by 40% and now costs \$72. What was the price before the discount?

The cost now, \$72, represents **60%** of the original total—not 40%.

We can find 10% of the original price by dividing $72 \div 6 = 12$. And from that, 100% of the price is 10 times that, or \$120. If this confuses you, draw a bar model with 10 parts, each representing 10% of the original price.

- 4. A dress was discounted by 20%. The discounted price is \$24. What was the price before the discount?
- 5. A concert ticket was discounted by 60%. The discounted price is \$21.60. What was the original price?
- 6. Joe spent 72% of his money, and now he has \$56 left. How much did Joe have to begin with?
- 7. Crystal spent 52% of her money and now she has \$120 left. How much did she spend?
- 8. Uncle Jack raises two different breeds of cows on his farm. Of his cows, 28% are Black Angus and the rest are Hereford. If he has 420 Black Angus cows, how many Herefords does he have?
- 9. A survey found out that 16% of the people who had bought a certain brand of coffee grinder were unhappy with it. If there were 126 people who *were* happy with it, then how many people in total had bought that brand?

One calculator is discounted by 30% and now costs \$42. Another is discounted by 25% and now it also costs \$42. Which calculator had the cheaper original price? How much cheaper?

Sample worksheet from https://www.mathmammoth.com